Two-Grid Method for a Fully Discrete Mixed Finite Element Solution of the Time-Dependent Schrödinger Equation
نویسندگان
چکیده
We study the backward Euler fully discrete mixed finite element method for time-dependent Schrödinger equation; error result of solution is obtained in L2-norm with order O(τ+hk+1). Then, a two-grid presented scheme. Using this method, we solve original problem on much coarser grid and elliptic equations fine grid. In addition, also O(τ+hk+1+Hk+2). The numerical experiment provided to demonstrate efficiency algorithm.
منابع مشابه
Fully discrete finite element approaches for time-dependent Maxwell's equations
Many problems in sciences and industry involve the solutions of Maxwell’s equations, for example, problems arising in plasma physics, microwave devices, diffraction of electromagnetic waves. In this paper, we are interested in the numerical solution of time-dependent Maxwell’s equations in a bounded polyhedral domain in three dimensions. In the literature, one can find a great deal of work on n...
متن کاملA new positive definite semi-discrete mixed finite element solution for parabolic equations
In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations. Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...
متن کاملA fully discrete stabilized finite element method for the time-dependent Navier-Stokes equations
In this article, we consider a fully discrete stabilized finite element method based on two local Gauss integrations for the two-dimensional time-dependent Navier–Stokes equations. It focuses on the lowest equal-order velocity–pressure pairs. Unlike the other stabilized method, the present approach does not require specification of a stabilization parameter or calculation of higher-order deriva...
متن کاملA Two-Grid Method for Mixed Finite-Element Solution of Reaction-Di usion Equations
We present a scheme for solving two-dimensional, nonlinear reaction-diiusion equations, s @p @t ? r (Krp) = f (p); using a mixed nite-element method. To linearize the mixed-method equations, we use a two grid scheme that relegates all of the Newton-like iterations to a grid 4H much coarser than the original one 4h, with no loss in order of accuracy so long as the mesh sizes obey H = O(p h). The...
متن کاملNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2023
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math11143127